Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Improving seismic motion isolation of gravitational-wave detectors
AEI researchers demonstrate the feasibility of using a suspension platform interferometer to stabilize the length of a suspended optical resonator
20. Februar 2023
Current and future groundbased interferometric gravitational-wave detectors are decoupled from ground motion by a passive mechanical suspension system. Additionally, stable measurement operation of the interferometers requires active control of the suspended optical systems. This control can reintroduce noise into the measurement process, mostly at low frequencies, and is a known problem in the current detector generation and one of the major challenges for the future observatories like the Einstein Telescope and Cosmic Explorer. Using the institute’s 10 meter prototype facility, a team of AEI researchers has now demonstrated how a suspension platform interferometer – an interferometric and optical position sensor – can reduce input motion and suppress noise in the seismic isolation. Overall, they stabilized the length of a suspended optical resonator with a length of more than ten meters and reduced the differential motion by three orders of magnitude. The results are relevant for current and future gravitational-wave detectors.
Paper abstract
We report a reduction in motion for suspended seismic-isolation platforms in a gravitational wave detector prototype facility. We sense the distance between two seismic-isolation platforms with a suspension platform interferometer and the angular motion with two optical levers. Feedback control loops reduce the length changes between two platforms separated by 11.65 m to 10 pm Hz−1/2 at 100 mHz, and the angular motion of each platform is reduced to 1 nrad Hz−1/2 at 100 mHz. As a result, the length fluctuations in a suspended optical resonator on top of the platforms is reduced by three orders of magnitude. This result is of direct relevance to gravitational wave detectors that use similar suspended optics and seismic isolation platforms.
Bereits kurz nach dem Beginn des vierten Beobachtungslaufs haben die LIGO-Virgo-KAGRA-Kollaborationen ein überraschendes Gravitationswellen-Signal beobachtet.
Die nächste Generation des Satellitenpaares wird mit einem hochpräzisen Laserinstrument mit zentralen Beiträgen des AEI Hannover die Folgen des Klimawandels beobachten.
Der November der Wissenschaft am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) und dem Institut für Gravitationphysik der Leibniz Universität Hannover mit sieben spannenden Veranstaltungen